6 research outputs found

    FO-definable transformations of infinite strings

    Get PDF
    The theory of regular and aperiodic transformations of finite strings has recently received a lot of interest. These classes can be equivalently defined using logic (Monadic second-order logic and first-order logic), two-way machines (regular two-way and aperiodic two-way transducers), and one-way register machines (regular streaming string and aperiodic streaming string transducers). These classes are known to be closed under operations such as sequential composition and regular (star-free) choice; and problems such as functional equivalence and type checking, are decidable for these classes. On the other hand, for infinite strings these results are only known for ω\omega-regular transformations: Alur, Filiot, and Trivedi studied transformations of infinite strings and introduced an extension of streaming string transducers over ω\omega-strings and showed that they capture monadic second-order definable transformations for infinite strings. In this paper we extend their work to recover connection for infinite strings among first-order logic definable transformations, aperiodic two-way transducers, and aperiodic streaming string transducers

    Synthesis of Computable Regular Functions of Infinite Words

    Get PDF
    Regular functions from infinite words to infinite words can be equivalently specified by MSO-transducers, streaming ?-string transducers as well as deterministic two-way transducers with look-ahead. In their one-way restriction, the latter transducers define the class of rational functions. Even though regular functions are robustly characterised by several finite-state devices, even the subclass of rational functions may contain functions which are not computable (by a Turing machine with infinite input). This paper proposes a decision procedure for the following synthesis problem: given a regular function f (equivalently specified by one of the aforementioned transducer model), is f computable and if it is, synthesize a Turing machine computing it. For regular functions, we show that computability is equivalent to continuity, and therefore the problem boils down to deciding continuity. We establish a generic characterisation of continuity for functions preserving regular languages under inverse image (such as regular functions). We exploit this characterisation to show the decidability of continuity (and hence computability) of rational and regular functions. For rational functions, we show that this can be done in NLogSpace (it was already known to be in PTime by Prieur). In a similar fashion, we also effectively characterise uniform continuity of regular functions, and relate it to the notion of uniform computability, which offers stronger efficiency guarantees

    On the Separability Problem of String Constraints

    Get PDF
    We address the separability problem for straight-line string constraints. The separability problem for languages of a class C by a class S asks: given two languages A and B in C, does there exist a language I in S separating A and B (i.e., I is a superset of A and disjoint from B)? The separability of string constraints is the same as the fundamental problem of interpolation for string constraints. We first show that regular separability of straight line string constraints is undecidable. Our second result is the decidability of the separability problem for straight-line string constraints by piece-wise testable languages, though the precise complexity is open. In our third result, we consider the positive fragment of piece-wise testable languages as a separator, and obtain an ExpSpace algorithm for the separability of a useful class of straight-line string constraints, and a Pspace-hardness result

    Regular Transducer Expressions for Regular Transformations

    No full text
    International audienceFunctional MSO transductions, deterministic two-way transducers, as well as streaming string transducers are all equivalent models for regular functions. In this paper, we show that every regular function, either on finite words or on infinite words, captured by a deterministic two-way transducer, can be described with a regular transducer expression (RTE). For infinite words, the two-way transducer uses Muller acceptance and ω-regular look-ahead. RTEs are constructed from constant functions using the combinators if-then-else (deterministic choice), Hadamard product, and unambiguous versions of the Cauchy product, the 2-chained Kleene-iteration and the 2-chained omega-iteration. Our proof works for transformations of both finite and infinite words, extending the result on finite words of Alur et al. in LICS'14. The construction of an RTE associated with a deterministic two-way transducer is guided by a regular expression which is "good" wrt. its transition monoid. "Good" expressions are unambiguous, ensuring the functionality of the output computed. Moreover, in "good" expressions, iterations (Kleene-plus or omega) are restricted to subexpressions corresponding to idempotent elements of the transition monoid. "Good" expressions can be obtained with an unambiguous version of Imre Simon's famous forest factorization theorem. To handle infinite words, we introduce the notion of transition monoids for deterministic two-way Muller transducers with look-ahead, where the look-ahead is captured by some backward deterministic Büchi automaton. This paper is an extended version of [15] presented at LICS'18
    corecore